Kubernetes构建监控可视化告警平台
一、部署架构规划
部署方式采用
deployment方式部署deployment部署流程
- 创建configmap
- 创建deployment
- 创建svc
1.1 机器角色分配
| 主机名 | IP地址 | 角色 | 命名空间分配 |
|---|---|---|---|
| k8s-master01 | 100.100.157.10 | 操作节点 | monitor-sa |
| k8s-work01 | 100.100.157.11 | node-expoter/prometheus/grafana/Altermanege | monitor-sa |
| k8s-node02 | 100.100.157.12 | node-expoter/prometheus-webhook-dingtalk/kube-state-metrics | monitor-sa |
1.2 官网地址参考
| 官网 | URL | 用途 | 备注 |
|---|---|---|---|
| grafana | 常用模版地址 | dashboard模板 | node-exporter 模版id:11074 |
| prometheus-webhook-dingtalk | github官网 | github代码库 | 使用教程 |
1.3 所需镜像软件版本
| 镜像名称 | 皆使用最新版本号 |
|---|---|
| prometheus | latest |
| node-expoter | latest |
| grafana | latest |
| Altermaneger | latest |
| prometheus-webhook-dingtalk | latest |
| kube-state-metrics | latest |
1.4 安装前环境准备
- pull镜像并push到harbor镜像仓库

二、安装node-exporter
2.1 编写node-export.yaml文件并应用
1.编写node-export.yaml文件
[root@k8s-master01 prometheus]# cat node-export.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: node-exporter
namespace: monitor-sa
labels:
name: node-exporter
spec:
selector:
matchLabels:
name: node-exporter
template:
metadata:
labels:
name: node-exporter
spec:
hostPID: true #表示pod中的容器可以直接使用主机的网络,与宿主机进行通信
hostIPC: true
hostNetwork: true #会直接将宿主机的9100端口映射出来,不需要创建service
containers:
- name: node-exporter
image: 100.100.157.10:5000/k8s/prometheus/node-expoter:latest
ports:
- containerPort: 9100
resources:
requests:
cpu: 0.15 #容器运行至少需要0.15核CPU
securityContext:
privileged: true #开启特权模式
args:
- --path.procfs #配置挂载宿主机的路径
- /host/proc
- --path.sysfs
- /host/sys
- --collector.filesystem.ignored-mount-points
- '"^/(sys|proc|dev|host|etc)($|/)"'
volumeMounts:
- name: dev
mountPath: /host/dev
- name: proc
mountPath: /host/proc
- name: sys
mountPath: /host/sys
- name: rootfs
mountPath: /rootfs
tolerations:
- key: "node-role.kubernetes.io/master"
operator: "Exists"
effect: "NoSchedule"
volumes:
- name: proc
hostPath:
path: /proc
- name: dev
hostPath:
path: /dev
- name: sys
hostPath:
path: /sys
- name: rootfs
hostPath:
path: /
2.创建命名空间
kubectl create ns monitor-sa
3.加载文件启动
kubectl apply -f node-export.yaml
4.验证pod创建,验证ip是否与宿主机ip相同
[root@k8s-master01 prometheus]# kubectl get pod -n monitor-sa -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
node-exporter-8sg29 1/1 Running 0 165m 100.100.157.12 k8s-node02 <none> <none>
node-exporter-vwvg6 1/1 Running 0 165m 100.100.157.10 k8s-master01 <none> <none>
node-exporter-wv9mw 1/1 Running 0 165m 100.100.157.11 k8s-work01 <none> <none>
2.2 测试node-exporter能否采集到数据
# 通过curl 宿主机IP:9100/metrics 采集数据
# 我访问的是master节点的CPU
[root@k8s-master01 prometheus]# curl 100.100.157.10:9100/metrics | grep node_cpu_seconds
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0# HELP node_cpu_seconds_total Seconds the CPUs spent in each mode.
# TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{cpu="0",mode="idle"} 480057.49
node_cpu_seconds_total{cpu="0",mode="iowait"} 1090.83三、prometheus-server安装
3.1 创建sa(serviceaccount)账号,对sa做rabc授权
1.创建一个 sa 账号 monitor
[root@k8s-master01 prometheus]# kubectl create serviceaccount monitor -n monitor-sa
serviceaccount/monitor created
2.把 sa 账号 monitor 通过 clusterrolebing 绑定到 clusterrole 上
[root@k8s-master01 prometheus]# kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor
clusterrolebinding.rbac.authorization.k8s.io/monitor-clusterrolebinding created
3.创建数据目录
mkdir /root/hxy/data/prometheus/
chmod 777 /root/hxy/data/prometheus/3.2 安装prometheus server服务
1.创建configmap用来存放Prometheus配置信息
[root@k8s-master01 prometheus]# cat prometheus-cfg.yaml
---
kind: ConfigMap
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus-config
namespace: monitor-sa
data:
prometheus.yml: |
global:
scrape_interval: 15s #采集目标主机监控数据的时间间隔
scrape_timeout: 10s #数据采集超时时间,默认10秒
evaluation_interval: 1m #触发告警检测的时间,默认是1m
scrape_configs: #配置数据源,称为target,每个target用job_name命名
- job_name: 'kubernetes-node'
kubernetes_sd_configs: #使用的是k8s的服务发现
- role: node #使用node角色,它使用默认的kubelet提供的http端口来发现集群中的每个node节点
relabel_configs: #重新标记
- source_labels: [__address__] #配置的原始标签,匹配地址
regex: '(.*):10250' #匹配带有10250端口的url
replacement: '${1}:9100' #把匹配到的 ip:10250 的 ip 保留
target_label: __address__ #新生成的 url 是${1}获取到的 ip:9100
action: replace
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- job_name: 'kubernetes-node-cadvisor' # 抓取 cAdvisor 数据,是获取 kubelet 上/metrics/cadvisor 接口数据来获取容器的资源使用情况
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap #把匹配到的标签保留
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
- job_name: 'kubernetes-apiserver'
kubernetes_sd_configs:
- role: endpoints #使用 k8s 中的 endpoint 服务发现,采集 apiserver 6443 端口获取到的数据
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] #endpoint 这个对象的名称空间,endpoint 对象的服务名,exnpoint 的端口名称
action: keep #采集满足条件的实例,其他实例不采集
regex: default;kubernetes;https
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true # 重新打标仅抓取到的具有 "prometheus.io/scrape: true" 的 annotation 的端点,意思是说如果某个 service 具有 prometheus.io/scrape = true annotation 声明则抓取
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?) #重新设置 scheme,匹配源标签__meta_kubernetes_service_annotation_prometheus_io_scheme 也就是 prometheus.io/scheme annotation,如果源标签的值匹配到 regex,则把值替换为__scheme__对应的值
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+) # 应用中自定义暴露的指标,不过这里写的要和 service 中做好约定,如果 service 中这样写 prometheus.io/app-metricspath: '/metrics' 那么你这里就要
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2 #暴露自定义的应用的端口,就是把地址和你在 service 中定义的 "prometheus.io/port = <port>" 声明做一个拼接,然后赋值给__address__,这样 prometheus 就能获取自定义应用的端口,然后通过这个端口再结合__metrics_path__来获取指标
- action: labelmap #保留下面匹配到的标签
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace #替换__meta_kubernetes_namespace 变成 kubernetes_namespace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
2.应用
kubectl apply -f prometheus-cfg.yaml
3.验证
[root@k8s-master01 prometheus]# kubectl get cm -n monitor-sa |grep con
prometheus-config 1 163m3.3通过deployment部署prometheus
1.编写yaml文件
[root@k8s-master01 prometheus]# cat prometheus-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-server
namespace: monitor-sa
labels:
app: prometheus
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
component: server
#matchExpressions:
#- {key: app, operator: In, values: [prometheus]}
#- {key: component, operator: In, values: [server]}
template:
metadata:
labels:
app: prometheus
component: server
annotations:
prometheus.io/scrape: 'false'
spec:
nodeName: k8s-work01
serviceAccountName: monitor
containers:
- name: prometheus
image: 100.100.157.10:5000/k8s/prometheus/prometheus:latest
imagePullPolicy: IfNotPresent
command:
- prometheus
- --config.file=/etc/prometheus/prometheus.yml
- --storage.tsdb.path=/prometheus #旧数据存储目录
- --storage.tsdb.retention.time=3d #何时删除旧数据,默认为 15 天
- --web.enable-lifecycle #开启热加载
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: /etc/prometheus/prometheus.yml
name: prometheus-config
subPath: prometheus.yml
- mountPath: /prometheus/
name: prometheus-storage-volume
volumes:
- name: prometheus-config
configMap:
name: prometheus-config
items:
- key: prometheus.yml
path: prometheus.yml
mode: 0644
- name: prometheus-storage-volume
hostPath:
path: /root/hxy/data/prometheus/
type: Directory
2.应用
kubectl apply -f prometheus-deploy.yaml
3.验证查看
[root@k8s-master01 prometheus]# kubectl get deploy -n monitor-sa |grep ser
prometheus-server 1/1 1 1 104m3.4给prometheus pod创建一个service
1.编写yaml文件
[root@k8s-master01 prometheus]# cat prometheus-svc.yaml
apiVersion: v1
kind: Service
metadata:
name: prometheus
namespace: monitor-sa
labels:
app: prometheus
spec:
type: NodePort
ports:
- port: 9090
targetPort: 9090
protocol: TCP
selector:
app: prometheus
component: server
2.应用
kubectl apply -f prometheus-svc.yaml
3.验证查看
[root@k8s-master01 prometheus]# kubectl get svc -n monitor-sa |grep pro
prometheus NodePort 10.100.136.90 <none> 9090:31467/TCP 135m3.5访问测试
通过查询可以看到service在宿主机上映射的端口是31467,访问k8s集群的work1节点的IP:端口/graph,就可以访问到web ui界面

四、Grafana安装
4.1编写yaml文件应用
1.编写yaml文件
[root@k8s-master01 prometheus]# cat prometheus-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-server
namespace: monitor-sa
labels:
app: prometheus
spec:
replicas: 1
selector:
[root@k8s-master01 prometheus]# cat grafana.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: monitoring-grafana
namespace: monitor-sa
spec:
replicas: 1
selector:
matchLabels:
task: monitoring
k8s-app: grafana
template:
metadata:
labels:
task: monitoring
k8s-app: grafana
spec:
nodeName: k8s-work01
containers:
- name: grafana
image: 100.100.157.10:5000/k8s/prometheus/grafana:latest
ports:
- containerPort: 3000
protocol: TCP
volumeMounts:
- mountPath: /etc/ssl/certs
name: ca-certificates
readOnly: true
- mountPath: /var/lib/grafana
name: grafana-storage
env:
- name: INFLUXDB_HOST
value: monitoring-influxdb
- name: GF_SERVER_HTTP_PORT
value: "3000"
# The following env variables are required to make Grafana accessible via
# the kubernetes api-server proxy. On production clusters, we recommend
# removing these env variables, setup auth for grafana, and expose the grafana
# service using a LoadBalancer or a public IP.
- name: GF_AUTH_BASIC_ENABLED
value: "false"
- name: GF_AUTH_ANONYMOUS_ENABLED
value: "true"
- name: GF_AUTH_ANONYMOUS_ORG_ROLE
value: Admin
- name: GF_SERVER_ROOT_URL
# If you're only using the API Server proxy, set this value instead:
# value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
value: /
volumes:
- name: ca-certificates
hostPath:
path: /etc/ssl/certs
- name: grafana-storage
emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
labels:
# For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
# If you are NOT using this as an addon, you should comment out this line.
kubernetes.io/cluster-service: 'true'
kubernetes.io/name: monitoring-grafana
name: monitoring-grafana
namespace: monitor-sa
spec:
# In a production setup, we recommend accessing Grafana through an external Loadbalancer
# or through a public IP.
# type: LoadBalancer
# You could also use NodePort to expose the service at a randomly-generated port
# type: NodePort
ports:
- port: 80
targetPort: 3000
selector:
k8s-app: grafana
type: NodePort
2.应用
kubectl apply -f grafana.yaml
3.验证查看
[root@k8s-master01 prometheus]# kubectl get pod -n monitor-sa -o wide | grep monitor
monitoring-grafana-9fd8c4d46-kmxsc 1/1 Running 0 113m 10.244.1.23 k8s-work01 <none> <none>
[root@k8s-master01 prometheus]# kubectl get svc -n monitor-sa
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
monitoring-grafana NodePort 10.103.20.21 <none> 80:30102/TCP 113m4.2 访问测试
通过查询可以看到service在宿主机上映射的端口是30102,访问k8s集群的work1节点的IP:端口,就可以访问到grafana web ui界面

4.3 添加监控dashboard模板
- 添加prometheus数据源
导入json或dashboard id
- node-exporter为例:导入模版id:11074

五、安装kube-state-metrics组件
介绍kube-state-metrics组件
kube-state-metrics 通过监听 API Server 生成有关资源对象的状态指标,比如 Deployment、Node、Pod,需要注意的是 kube-state-metrics 只是简单的提供一个 metrics 数据,并不会存储这 些指标数据,所以我们可以使用 Prometheus 来抓取这些数据然后存储,主要关注的是业务相关的一 些元数据,比如 Deployment、Pod、副本状态等;调度了多少个 replicas?现在可用的有几个?多 少个 Pod 是 running/stopped/terminated 状态?Pod 重启了多少次?我有多少 job 在运行中
5.1 创建sa并对其授权
1.创建sa并对其授权
[root@k8s-master01 prometheus]# cat kube-state-metrics-rbac.yaml
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: kube-state-metrics
namespace: monitor-sa
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: kube-state-metrics
rules:
- apiGroups: [""]
resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]
verbs: ["list", "watch"]
- apiGroups: ["extensions"]
resources: ["daemonsets", "deployments", "replicasets"]
verbs: ["list", "watch"]
- apiGroups: ["apps"]
resources: ["statefulsets"]
verbs: ["list", "watch"]
- apiGroups: ["batch"]
resources: ["cronjobs", "jobs"]
verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
resources: ["horizontalpodautoscalers"]
verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: kube-state-metrics
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: kube-state-metrics
subjects:
- kind: ServiceAccount
name: kube-state-metrics
namespace: monitor-sa5.2 编写yaml文件并应用
1.编写yaml
[root@k8s-master01 prometheus]# cat kube-state-metrics-deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: kube-state-metrics
namespace: monitor-sa
spec:
replicas: 1
selector:
matchLabels:
app: kube-state-metrics
template:
metadata:
labels:
app: kube-state-metrics
spec:
nodeName: k8s-node02
serviceAccountName: kube-state-metrics
containers:
- name: kube-state-metrics
image: 100.100.157.10:5000/k8s/prometheus/kube-state-metrics
ports:
- containerPort: 8080
2.应用
kubectl apply -f kube-state-metrics-deploy.yaml
3.验证查看
[root@k8s-master01 prometheus]# kubectl get pod -n monitor-sa -o wide |grep state
kube-state-metrics-5b689dccc7-7pfsv 1/1 Running 0 7m27s 10.244.2.7 k8s-node02 <none> <none>5.3 创建servcie
1.编写svc yaml文件
[root@k8s-master01 prometheus]# cat kube-state-metrics-svc.yaml
apiVersion: v1
kind: Service
metadata:
annotations:
prometheus.io/scrape: 'true'
name: kube-state-metrics
namespace: monitor-sa
labels:
app: kube-state-metrics
spec:
ports:
- name: kube-state-metrics
port: 8080
protocol: TCP
selector:
app: kube-state-metrics
2.应用
kubectl apply -f kube-state-metrics-svc.yaml
3.验证查看
[root@k8s-master01 prometheus]# kubectl get svc -n monitor-sa
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-state-metrics ClusterIP 10.105.152.211 <none> 8080/TCP 8m2s5.4 导入k8s pod 监控模版
- 添加prometheus数据源
导入json或dashboard id
kube-state-metrics为例:导入模版id: 13105

六、安装alertmanager组件
6.1 创建alertmanager-cm.yaml配置文件
1.创建configmap
[root@k8s-master01 prometheus]# cat alertmanager-cm.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: alertmanager-config
namespace: monitor-sa
data:
alertmanager.yml: |
global:
resolve_timeout: 15s
inhibit_rules:
- source_match:
severity: 'critical'
target_match:
severity: 'warning'
equal: ['alertname', 'namespace']
route:
group_by: ['alertname', 'namespace']
group_wait: 30s
group_interval: 5m
repeat_interval: 1h
receiver: 'webhook1'
routes:
- match:
severity: 'warning' # 修正为匹配severity标签
receiver: 'webhook1'
receivers:
- name: 'webhook1'
webhook_configs:
- url: 'http://100.100.157.12:30071/dingtalk/webhook1/send'
send_resolved: true
2.应用
kubectl apply -f alertmanager-cm.yaml6.2 创建alertmanager-deploy
1.编辑yaml
[root@k8s-master01 prometheus]# cat alertmanager-deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: alertmanager
namespace: monitor-sa
labels:
app: alertmanager
component: server
spec:
replicas: 1
selector:
matchLabels:
app: alertmanager
component: server
template:
metadata:
labels:
app: alertmanager
component: server
spec:
nodeName: k8s-work01
containers:
- name: alertmanager
image: 100.100.157.10:5000/k8s/prometheus/alertmanager:latest
args:
- "--config.file=/etc/alertmanager/alertmanager.yml"
- "--log.level=debug"
ports:
- containerPort: 9093
name: alertmanager
volumeMounts:
- name: alertmanager-config
mountPath: /etc/alertmanager
- name: localtime
mountPath: /etc/localtime
volumes:
- name: alertmanager-config
configMap:
name: alertmanager
- name: localtime
hostPath:
path: /usr/share/zoneinfo/Asia/Shanghai
2.应用
kubectl -apply -f alertmanager-deploy.yaml 6.4 创建altermanager svc yaml
1.编辑yaml
[root@k8s-master01 prometheus]# cat alertmanager-svc.yaml
apiVersion: v1
kind: Service
metadata:
name: alertmanager
namespace: monitor-sa
labels:
app: alertmanager
spec:
type: NodePort
ports:
- port: 9093
targetPort: 9093
nodePort: 30903 # 建议显式指定NodePort范围(30000-32767)
protocol: TCP
selector:
app: alertmanager
2. 应用
kubectl apply -f alertmanager-svc.yaml6.5 创建prometheus和告警规则的配置文件
1.# 先删除上次设置的configmap
[root@k8s-master01 prometheus]# kubectl delete -f prometheus-cfg.yaml
configmap "prometheus-config" deleted
2.新建configmap配置
[root@k8s-master01 prometheus]# cat prometheus-alertmanager-cfg.yaml
kind: ConfigMap
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus-config
namespace: monitor-sa
data:
prometheus.yml: |
rule_files:
- /etc/prometheus/rules.yml
alerting:
alertmanagers:
- static_configs:
- targets: ["100.100.157.12:30903"]
global:
scrape_interval: 15s
scrape_timeout: 10s
evaluation_interval: 1m
scrape_configs:
- job_name: 'kubernetes-node'
kubernetes_sd_configs:
- role: node
relabel_configs:
- source_labels: [__address__]
regex: '(.*):10250'
replacement: '${1}:9100'
target_label: __address__
action: replace
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- job_name: 'kubernetes-node-cadvisor'
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
- job_name: 'kubernetes-apiserver'
kubernetes_sd_configs:
- role: endpoints
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- action: keep
regex: true
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_scrape
- action: replace
regex: (.+)
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_path
target_label: __metrics_path__
- action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
source_labels:
- __address__
- __meta_kubernetes_pod_annotation_prometheus_io_port
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- action: replace
source_labels:
- __meta_kubernetes_namespace
target_label: kubernetes_namespace
- action: replace
source_labels:
- __meta_kubernetes_pod_name
target_label: kubernetes_pod_name
- job_name: 'kubernetes-kube-proxy'
scrape_interval: 5s
static_configs:
- targets: ['100.100.157.10:10249','100.100.157.11:10249','100.100.157.12:10249']
- job_name: 'kubernetes-etcd'
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
scrape_interval: 5s
static_configs:
- targets: ['100.100.157.10:2379']
rules.yml: |
groups:
- name: example
rules:
- alert: kube-proxy的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: kube-proxy的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: scheduler的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: scheduler的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: controller-manager的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: controller-manager的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: apiserver的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: apiserver的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: etcd的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: etcd的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: kube-state-metrics的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
value: "{{ $value }}%"
threshold: "80%"
- alert: kube-state-metrics的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
value: "{{ $value }}%"
threshold: "90%"
- alert: coredns的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
value: "{{ $value }}%"
threshold: "80%"
- alert: coredns的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
value: "{{ $value }}%"
threshold: "90%"
- alert: kube-proxy打开句柄数>600
expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kube-proxy打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: kubernetes-schedule打开句柄数>600
expr: process_open_fds{job=~"kubernetes-schedule"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kubernetes-schedule打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-schedule"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: kubernetes-controller-manager打开句柄数>600
expr: process_open_fds{job=~"kubernetes-controller-manager"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kubernetes-controller-manager打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-controller-manager"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: kubernetes-apiserver打开句柄数>600
expr: process_open_fds{job=~"kubernetes-apiserver"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kubernetes-apiserver打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-apiserver"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: kubernetes-etcd打开句柄数>600
expr: process_open_fds{job=~"kubernetes-etcd"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kubernetes-etcd打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-etcd"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: coredns
expr: process_open_fds{k8s_app=~"kube-dns"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"
value: "{{ $value }}"
- alert: coredns
expr: process_open_fds{k8s_app=~"kube-dns"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"
value: "{{ $value }}"
3.应用
[root@k8s-master01 prometheus]# kubectl apply -f prometheus-alertmanager-cfg.yaml
configmap/prometheus-config created
[root@k8s-master01 prometheus]# kubectl get cm -n monitor-sa
NAME DATA AGE
alertmanager 1 25m
prometheus-config 2 3m20s七、安装prometheus和altermanager
7.1 删除上述操作步骤安装的prometheus的deployment资源
kubectl delete -f prometheus-deploy.yaml
deployment.apps "prometheus-server" deleted7.2 生成etcd-certs
[root@k8s-master01 prometheus]# kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt
secret/etcd-certs created
[root@k8s-master01 prometheus]# kubectl get secret -n monitor-sa
NAME TYPE DATA AGE
default-token-jjw8z kubernetes.io/service-account-token 3 24h
etcd-certs Opaque 3 40s
monitor-token-jr24f kubernetes.io/service-account-token 3 23h7.3 编写deployment的yaml
1.编写prometheus deploy yaml
[root@k8s-master01 prometheus]# cat prometheus-deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-server
namespace: monitor-sa
labels:
app: prometheus
component: server
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
component: server
template:
metadata:
labels:
app: prometheus
component: server
spec:
nodeName: k8s-work01
serviceAccountName: monitor
containers:
- name: prometheus
image: 100.100.157.10:5000/k8s/prometheus/prometheus:latest
imagePullPolicy: IfNotPresent
args:
- "--config.file=/etc/prometheus/prometheus.yml"
- "--storage.tsdb.path=/prometheus"
- "--web.enable-lifecycle"
ports:
- containerPort: 9090
volumeMounts:
- mountPath: /etc/prometheus
name: prometheus-config
- mountPath: /prometheus/
name: prometheus-storage-volume
- name: k8s-certs
mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
volumes:
- name: prometheus-config
configMap:
name: prometheus-config
- name: prometheus-storage-volume
hostPath:
path: /root/hxy/data/prometheus/
type: DirectoryOrCreate
- name: k8s-certs
secret:
secretName: etcd-certs7.4验证
[root@k8s-master01 prometheus]# kubectl get pod -n monitor-sa
NAME READY STATUS RESTARTS AGE
alertmanager-6746c4b964-fj5sd 1/1 Running 0 10h
kube-state-metrics-5b689dccc7-7pfsv 1/1 Running 0 16h
monitoring-grafana-9fd8c4d46-kmxsc 1/1 Running 0 20h
node-exporter-8sg29 1/1 Running 0 22h
node-exporter-vwvg6 1/1 Running 0 22h
node-exporter-wv9mw 1/1 Running 0 22h
prometheus-server-5875bc5556-9cflt 1/1 Running 0 6m4s
[root@k8s-master01 prometheus]# kubectl get svc -n monitor-sa
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
alertmanager NodePort 10.101.13.179 <none> 9093:30903/TCP 14h
八、部署webhook钉钉告警
8.1 编辑webhook configmang
[root@k8s-master01 prometheus]# cat dingtalk-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus-webhook-dingtalk-config
namespace: monitor-sa
data:
config.yml: |-
templates:
- /etc/prometheus-webhook-dingtalk/default.tmpl
targets:
webhook1:
url: https://oapi.dingtalk.com/robot/send?access_token=0c05f33c5a85757dcc433bada4fc4c8af88b23b20edd628c96a235736aedf408
secret: SEC50c82183087eea89b8a5eeeb3a3ad9555f5e159f07360a35393ae545db6b4542
mention:
all: true
message:
text: '{{ template "default.tmpl" . }}'
default.tmpl: |
{{ define "default.tmpl" }}
{{- if gt (len .Alerts.Firing) 0 -}}
{{- range $index, $alert := .Alerts -}}
============ = **<font color='#FF0000'>告警</font>** = ============= #红色字体
**告警名称:** {{ $alert.Labels.alertname }}
**告警级别:** {{ $alert.Labels.severity }} 级
**告警状态:** {{ .Status }}
**告警实例:** {{ $alert.Labels.instance }} {{ $alert.Labels.device }}
**告警概要:** {{ .Annotations.summary }}
**告警详情:** {{ $alert.Annotations.message }}{{ $alert.Annotations.description}}
**故障时间:** {{ ($alert.StartsAt.Add 28800e9).Format "2006-01-02 15:04:05" }}
============ = end = =============
{{- end }}
{{- end }}
{{- if gt (len .Alerts.Resolved) 0 -}}
{{- range $index, $alert := .Alerts -}}
============ = <font color='#00FF00'>恢复</font> = ============= #绿色字体
**告警实例:** {{ .Labels.instance }}
**告警名称:** {{ .Labels.alertname }}
**告警级别:** {{ $alert.Labels.severity }} 级
**告警状态:** {{ .Status }}
**告警概要:** {{ $alert.Annotations.summary }}
**告警详情:** {{ $alert.Annotations.message }}{{ $alert.Annotations.description}}
**故障时间:** {{ ($alert.StartsAt.Add 28800e9).Format "2006-01-02 15:04:05" }}
**恢复时间:** {{ ($alert.EndsAt.Add 28800e9).Format "2006-01-02 15:04:05" }}
============ = **end** = =============
{{- end }}
{{- end }}
{{- end }}8.2 编辑deploy文件
[root@k8s-master01 prometheus]# cat dingtalk-webhook-deploy.yaml
apiVersion: v1
kind: Service
metadata:
name: dingtalk
namespace: monitor-sa
labels:
app: dingtalk
spec:
selector:
app: dingtalk
ports:
- name: dingtalk
port: 8060
protocol: TCP
targetPort: 8060
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: dingtalk
namespace: monitor-sa
spec:
replicas: 1
selector:
matchLabels:
app: dingtalk
template:
metadata:
name: dingtalk
labels:
app: dingtalk
spec:
nodeSelector: # 关键修改:指定调度到 k8s-node02
kubernetes.io/hostname: k8s-node02 # 使用节点的主机名标签
containers:
- name: dingtalk
image: 100.100.157.10:5000/k8s/prometheus/prometheus-webhook-dingtalk
imagePullPolicy: IfNotPresent
args:
- --web.listen-address=:8060
- --config.file=/etc/prometheus-webhook-dingtalk/config.yml
ports:
- containerPort: 8060
volumeMounts:
- name: config
mountPath: /etc/prometheus-webhook-dingtalk
volumes:
- name: config
configMap:
name: prometheus-webhook-dingtalk-config8.3 编辑svc文件
[root@k8s-master01 prometheus]# cat dingtalk_service.yml
apiVersion: v1
kind: Service
metadata:
name: dingtalk
namespace: monitor-sa
labels:
app: dingtalk
spec:
type: NodePort # 关键修改:改为 NodePort
selector:
app: dingtalk
ports:
- name: dingtalk
port: 8060 # Service 监听的端口(集群内访问)
targetPort: 8060 # 容器端口
nodePort: 30071 # (可选)手动指定 NodePort 范围(30000-32767)九、验证告警
